~最近のレコメンドについてアイジェントECの中の人に聞いてみた
シルバーエッグの中の人によると、他のレコメンデーションでもブラウズブラウズ(閲覧+閲覧)相関を利用したものはあったが、比較的ノイズが多かったとのこと。アイジェントECでは、その精度をかなり高めたのだそうです。具体的には、ある顧客サイトでテスト導入したところ、従来のアルゴリズムを利用していたレコメンドのクリック率よりも30パーセント(30ポイントではなくパーセント)高いクリックスルー率を示したのだとか。有名な米Netflix が行っていたレコメンドエンジンのコンテストの勝利条件は既存システムの10%アップ(レーティングの予測精度で)ですから、なかなかですね。
また、既存の技術では大量の過去データを蓄積しなければ有効なレコメンデーションが出せないという弱点もありました。つまり、アクセスや購買の少ないサイトではレコメンドが生かし切れないんですね。でも、アイジェントECではサイト上での個別ユーザーの流れ(クリックストリーム)をベースにしており、全体トラフィック量が多くない(データが蓄積されない)サイトでも有用なレコメンドが可能になるとのこと。これは、コンテンツの入れ替わりの激しいサイトや、ページ数が膨大なコンテンツサイトでも精度の高いレコメンドが可能になるということなので、結構良い部分なのではないかと。
アイジェントECはレコメンド経由の売上額ベースの課金だということも併せると、「うちのサイト小さいから」というところでも使いやすいですね(初期費用も無料)。今回のバージョンアップでは、レコメンドの結果が良かったものはより強く推薦されるようになる強化学習の機能も追加されたので、サイトの成長にともなって徐々にレコメンドが変わっていくのも、発展途上のサイトにはありがたいかもしれません。
レコメンドというものはなかなか評価が難しいもので、実は、「そのシステムがどれくらい効果があるか」の世界共通の指標はありません。特に、レコメンデーションシステムが出したリンクのクリック数を成果として示す場合も多いですが、リンクのクリックは目的ではありませんよね。
レコメンデーションサービスを選ぶ際には、レコメンドのリンクがどうクリックされたかではなく、結果として求めるビジネス指標への影響がどうなっているかが大切です。購買率を増やせたのか、購買数を高められたのか、平均単価を高められたのか、リピート率を高められたのか。そういったビジネス目的を、導入側の担当者が正しく理解して検討することが、レコメンデーションエンジンでは大切なのです。
続きは会員限定です。無料の読者会員に登録すると続きをお読みいただけます。
-
会員登録 (無料)
-
ログインはこちら
関連記事
2015.07.10
2015.07.24

安田 英久
株式会社インプレスビジネスメディア Web担当者Forum編集長
企業のウェブサイト活用やウェブマーケティングに関するメディア「Web担当者Forum」(http://web-tan.forum.impressrd.jp/)を運営しています。
